Helly Circular-Arc Graph Isomorphism Is in Logspace
نویسندگان
چکیده
We present logspace algorithms for the canonical labeling problem and the representation problem of Helly circular-arc (HCA) graphs. The first step is a reduction to canonical labeling and representation of interval intersection matrices. In a second step, the Δ trees employed in McConnell’s linear time representation algorithm for interval matrices are adapted to the logspace setting and endowed with additional information to allow canonization. As a consequence, the isomorphism and recognition problems for HCA graphs turn out to be logspace complete.
منابع مشابه
Deciding Circular-Arc Graph Isomorphism in Parameterized Logspace
We compute a canonical circular-arc representation for a given circular-arc (CA) graph which implies solving the isomorphism and recognition problem for this class. To accomplish this we split the class of CA graphs into uniform and non-uniform ones and employ a generalized version of the argument given by Köbler et al. (2013) that has been used to show that the subclass of Helly CA graphs can ...
متن کاملOn the Isomorphism Problem for Helly Circular-Arc Graphs
The isomorphism problem is known to be efficiently solvable for interval graphs, while for the larger class of circular-arc graphs its complexity status stays open. We consider the intermediate class of intersection graphs for families of circular arcs that satisfy the Helly property. We solve the isomorphism problem for this class in logarithmic space. If an input graph has a Helly circular-ar...
متن کاملSolving the Canonical Representation and Star System Problems for Proper Circular-Arc Graphs in Logspace
We present a logspace algorithm that constructs a canonical intersection model for a given proper circular-arc graph, where canonical means that models of isomorphic graphs are equal. This implies that the recognition and the isomorphism problems for this class of graphs are solvable in logspace. For a broader class of concave-round graphs, that still possess (not necessary proper) circular-arc...
متن کاملNormal Helly circular-arc graphs and its subclasses
A Helly circular-arc modelM = (C,A) is a circle C together with a Helly family A of arcs of C. If no arc is contained in any other, thenM is a proper Helly circular-arc model, if every arc has the same length, then M is a unit Helly circular-arc model, and if there are no two arcs covering the circle, thenM is a normal Helly circular-arc model. A Helly (resp. proper Helly, unit Helly, normal He...
متن کاملThe clique operator on circular-arc graphs
A circular-arc graph G is the intersection graph of a collection of arcs on the circle and such a collection is called a model of G. Say that the model is proper when no arc of the collection contains another one, it is Helly when the arcs satisfy the Helly Property, while the model is proper Helly when it is simultaneously proper and Helly. A graph admitting a Helly (resp. proper Helly) model ...
متن کامل